Question 1:
1.1 19. ✓
1.2 64 ✓
1.3 $\frac{5}{6}$ ✓
1.4 $\sqrt{-16}$ ✓
1.5 $-0.234...$ ✓

Question 2:
2.1
\[
\begin{array}{c}
2 & 324 \\
2 & 162 ✓ \\
3 & 81 \\
3 & 27 ✓ \\
3 & 9 ✓ \\
3 & 3 ✓ \\
\hline
1
\end{array}
\]

\[324 = 2^2 \times 3^4 ✓\] (3)

2.2
\[
\begin{array}{c}
\sqrt{324} \\
\sqrt{2^2 \times 3^4} ✓
\end{array}
\]

\[= 2 \times 3^2 ✓ = 18 ✓\] (3)

Question 3:
3.1
\[-9 + 5 - 4 = -8 ✓\] (2)

3.2
\[-4 + 8 \div 6 ✓ = \frac{2}{6} = \frac{1}{3} ✓\] (3)

3.3
\[6 - (-2) + 1 = 6 + 2 + 1 = 9 ✓\] (4)

Question 4:
4.1
\[
\frac{4 + 9 + \sqrt{3}}{5 + 10} = \frac{8 + 9 + 3}{10} ✓
\]

\[= \frac{20}{10} ✓ = 2 ✓\] (3)

P.T.O.
4.2. \[\frac{2}{3} \times \left[\frac{25}{6} \right] = \frac{10}{9} \]

Question 5:

5.1. \[10x \]
5.2. \[(6a^5b^3)(-a^9b^3) = -6a^{14}b^6 \]
5.3. \[\frac{5p^3p^6q^{10}}{10pq^3} = \frac{p^8}{2q^3} \]

Question 6:

6.1. \[11, 7, 3, -1, -5, -4, -4 \]
6.2. \[T_n = 11 + (n-1)(-4) \]
6.3. \[T_{120} = -4(120) + 15 \]
6.4. \[-189 = -4n + 15 \]
\[204 = -4n \]
\[51 = n \]

Question 7:

7.1. \[8x^5 - 5x^3 - 4x + 9 \]
7.2. \[4 \]
7.3. \[-5 \]
7.4. \[8(-1)^5 - 5(-1)^3 - 4(-1) + 9 = 10 \]
Question 8:

8.1. \((4x)^2 \) \(\sqrt{2} \)

8.2. \(\frac{2p + \sqrt{9}}{\sqrt{2}} \)

8.3. \(\frac{3a}{b} = 4 \)

Question 9:

9.1. \(3^3 \cdot 4^3 \sqrt{2} \)

9.2. \(6x^6 - 10x^4 \sqrt{2} \)

9.3. \(4x^2 - 6x^2 + 2x^4 \sqrt{2} \)

9.4. \(\frac{\sqrt{2x^3y^2 + 4xy^2}}{\sqrt{2x^4y^2}} - \frac{10x^2y^3}{2xy^2} \)

9.5. \(x^2 + 2 - x \sqrt{2} \)

Question 10:

10.1. \(x = 1 \) \(\sqrt{2} \)

10.2. \(x - 2x = -6 - 4 \sqrt{2} \)

10.3. \(3x - 6 = 20 - 10x + 7 \) \(\sqrt{2} \)

10.4. \(3x = 49 \sqrt{2} \)

10.5. \(2x - 3 = 15 \) \(\sqrt{2} \)

10.6. \(x^2 = 9 \) \(\sqrt{2} \)

10.7. \(x = \pm 3 \) \(\sqrt{2} \)
QUESTION 11:

11.1. \[a = 60^\circ \quad \checkmark \quad (\text{equilateral } \triangle) \]

11.2. \[b + c = 90^\circ \quad \checkmark \quad (= \text{sum of opp. sides}) \]

\[b = 0 \]

\[b = c = 45^\circ \quad \checkmark \quad (\text{sum of } \triangle) \]

11.3. \[d = 147^\circ \quad \checkmark \quad (\text{ext. } \angle \text{ of } \triangle) \]

QUESTION 12:

12.1. \[x^2 = 4^2 + 3^2 \quad \text{Pythagoras} \]

\[x^2 = 25 \quad \checkmark \]

\[x = 5 \quad \checkmark \]

12.2. \[y^2 = 24^2 + 10^2 \quad \text{Pythagoras} \]

\[y^2 = 676 \quad \checkmark \]

\[\sqrt{676} = y \quad \checkmark \]

\[26 = y \quad \checkmark \]

\[10^2 = z^2 + 8^2 \quad \text{Pythagoras} \]

\[100 = z^2 + 64 \]

\[100 - 64 = z^2 \quad \checkmark \]

\[36 = z^2 \]

\[6 = z \quad \checkmark \]