MATHEMATICS P2
EXEMPLARY 2012
MEMORANDUM

MARKS: 100

This memorandum consists of 10 pages.
NOTE:
- If a candidate answers a question TWICE, only mark the FIRST attempt.
- If a candidate has crossed out an attempt of a question and not redone the question, mark the crossed out version.
- Consistent accuracy applies in ALL aspects of the marking memorandum.
- Assuming answers/values in order to solve a problem is NOT acceptable.

QUESTION 1

1.1

\[
\text{Mean} = \frac{\sum_{i=1}^{n} x_i}{n} = \frac{929}{19} = 48.89
\]

- \(\checkmark \frac{929}{19}\)
- \(\checkmark \text{answer}\)

(2)

1.2

31 ; 31 ; 34 ; 36 ; 37 ; 39 ; 40 ; 43 ; 46 ; 46 ; 48 ; 52 ; 56 ; 60 ; 62 ; 63 ; 65 ; 66 ; 74.

Median = 46

- \(\checkmark \text{arranging in ascending order}\)
- \(\checkmark \text{median}\)

(2)

1.3

Lower quartile = 37

Upper quartile = 62

- \(\checkmark \text{lower quartile}\)
- \(\checkmark \text{upper quartile}\)

(2)

1.4

- \(\checkmark \text{box with median}\)
- \(\checkmark \text{whisker}\)

(2)

[8]
QUESTION 2

2.1 The modal class is $2500 \leq x < 4500$

2.2

<table>
<thead>
<tr>
<th>Gross Vehicle Mass (GVM) (in kg)</th>
<th>Frequency</th>
<th>Midpoint</th>
<th>Frequency × midpoint</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2500 \leq x < 4500$</td>
<td>103</td>
<td>3500</td>
<td>360 500</td>
</tr>
<tr>
<td>$4500 \leq x < 6500$</td>
<td>19</td>
<td>5500</td>
<td>104 500</td>
</tr>
<tr>
<td>$6500 \leq x < 8500$</td>
<td>70</td>
<td>7500</td>
<td>525 000</td>
</tr>
<tr>
<td>$8500 \leq x < 10500$</td>
<td>77</td>
<td>9500</td>
<td>731 500</td>
</tr>
<tr>
<td>$10500 \leq x < 12500$</td>
<td>85</td>
<td>11500</td>
<td>977 500</td>
</tr>
<tr>
<td>$12500 \leq x < 14500$</td>
<td>99</td>
<td>13500</td>
<td>1 336 500</td>
</tr>
<tr>
<td>Sum</td>
<td>453</td>
<td>13500</td>
<td>4 035 500</td>
</tr>
</tbody>
</table>

Estimated mean $\bar{X} = \frac{403 500}{453} = 8908.39$ kg.

2.3 The estimated mean.
It is more at the centre of the data set. The modal class is found at the extreme left-hand side of the data set.
QUESTION 3

3.1.1

DE = \sqrt{(-3-3)^2 + (3 - (-5))^2}
= \sqrt{100}
= 10
✓ substitution into distance formula
✓ answer (2)

3.1.2

m_{DE} = \frac{-5 - 3}{3 - (-3)}
= \frac{-8}{6}
= \frac{-4}{3}
✓ substitution into gradient formula
✓ answer (2)

3.1.3

m_{EF} = \frac{3}{4}
EF \perp DE

\begin{align*}
-5 - k &= \frac{3}{4} \\
3 - (-1) &= 4 \\
-5 - k &= \frac{3}{4} \\
4 &= 4 \\
-20 - 4k &= 12 \\
-4k &= 32 \\
k &= -8
\end{align*}
✓ m_{EF} = \frac{3}{4}
✓ \frac{-5 - k}{3 - (-1)} = \frac{3}{4}
✓ simplification
✓ k = -8 (4)

3.1.4

M\left(\frac{(-3) + (-1)}{2}; \frac{3 + (-8)}{2}\right)
= \left(-2; \frac{-5}{2}\right)
✓ substitution into midpoint formula
✓ answer (2)
3.1.5 If DEFG is a rectangle then M is also the midpoint of EG.
Let the coordinates of G be \((x ; y)\)
\[
\left(\frac{x + 3}{2} ; \frac{y + (-5)}{2}\right) = \left(-2 ; -\frac{5}{2}\right)
\]
\[
\frac{x + 3}{2} = -2 \quad \text{and} \quad \frac{y - 5}{2} = -\frac{5}{2}
\]
\[
x + 3 = -4 \quad \text{and} \quad y - 5 = -5
\]
\[
x = -7 \quad \text{and} \quad y = 0
\]
\[
\therefore \text{G}(-7 ; 0)
\]

OR

The translation that sends E(3 ; –5) to F(–1; –8) also sends D(–3 ; 3) to G.
\((-1 ; -8) = (3 – 4 ; -5 – 3)\)
\[
\therefore \text{G}(-3 – 4 ; 3 – 3) = (- 7 ; 0)
\]

OR

The translation that sends E(3 ; –5) to D(–3 ; 3) also sends F(–1; –8) to G.
\((- 3 ; 3) = (3 – 6 ; -5 + 8)\)
\[
\therefore \text{G}(-1 – 6 ; -8 + 8) = (- 7 ; 0)
\]

3.2 \[
\sqrt{(x - 1)^2 + (5 - (-2))^2} = \sqrt{53}
\]
\[
(x - 1)^2 + 49 = 53
\]
\[
x^2 - 2x + 1 + 49 - 53 = 0
\]
\[
x^2 - 2x - 3 = 0
\]
\[
(x + 1)(x - 3) = 0
\]
\[
x = -1 \quad \text{or} \quad x = 3
\]
but D is in the second quadrant
\[
\therefore \text{only} \ x = -1 \text{is valid}
\]
QUESTION 4

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1.1</td>
<td>(\sin C = \frac{AB}{AC})</td>
<td>✓ AC (1)</td>
</tr>
<tr>
<td>4.1.2</td>
<td>(\cot A = \frac{AB}{BC})</td>
<td>✓ (\cot A) (1)</td>
</tr>
<tr>
<td>4.2</td>
<td>(\sin 60^\circ \cdot \tan 30^\circ) sec (45^\circ)</td>
<td>✓ ✓ substitution</td>
</tr>
<tr>
<td></td>
<td>(\left(\frac{\sqrt{3}}{2} \right) \left(\frac{1}{\sqrt{3}} \right))</td>
<td>✓ simplification</td>
</tr>
<tr>
<td></td>
<td>(\frac{1}{\sqrt{2}})</td>
<td>✓ answer (4)</td>
</tr>
<tr>
<td></td>
<td>(\frac{1}{2} \times \frac{1}{\sqrt{2}})</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\frac{1}{2\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}})</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\frac{\sqrt{2}}{4})</td>
<td></td>
</tr>
<tr>
<td>4.3.1</td>
<td>(r^2 = (-5)^2 + (12)^2)</td>
<td>✓ (r^2 = (-5)^2 + (12)^2)</td>
</tr>
<tr>
<td></td>
<td>(r^2 = 169)</td>
<td>✓ (r = 13)</td>
</tr>
<tr>
<td></td>
<td>(r = 13)</td>
<td>✓ answer (3)</td>
</tr>
<tr>
<td></td>
<td>(\cos \theta = -\frac{5}{13})</td>
<td></td>
</tr>
<tr>
<td>4.3.2</td>
<td>(\csc^2 \theta + 1)</td>
<td>✓ (= \frac{13}{12})</td>
</tr>
<tr>
<td></td>
<td>(\left(\frac{13}{12} \right)^2 + 1)</td>
<td>✓ simplification</td>
</tr>
<tr>
<td></td>
<td>(\frac{169}{144} + \frac{144}{144})</td>
<td>✓ answer</td>
</tr>
<tr>
<td></td>
<td>(\frac{313}{144})</td>
<td>(3) [12]</td>
</tr>
</tbody>
</table>
QUESTION 5

5.1.1

\[5 \cos x = 3 \]

\[
\cos x = \frac{3}{5}
\]

\[
x = \cos^{-1} \left(\frac{3}{5} \right)
\]

\[x = 53,1^\circ \]

\[\checkmark \cos x = \frac{3}{5} \]

\[\checkmark \text{answer} \]

5.1.2

\[\tan 2x = 1,19 \]

\[2x = \tan^{-1} (1,19) \]

\[2x = 49,95845\ldots^\circ \]

\[x = 25^\circ \]

\[\checkmark \text{answer} \]

5.1.3

\[4 \sec x - 3 = 5 \]

\[
4 \sec x = 8
\]

\[
\sec x = 2
\]

\[
\frac{1}{\sec x} = \frac{1}{2}
\]

\[
\cos x = \frac{1}{2}
\]

\[
x = \cos^{-1} \left(\frac{1}{2} \right)
\]

\[x = 60^\circ \]

\[\checkmark \text{answer} \]

5.2.1

\[\hat{J}KD = 8^\circ \text{ alternate angles} \]

\[\checkmark \text{answer} \]

5.2.2

\[\tan 8^\circ = \frac{5}{DK} \]

\[DK = \frac{5}{\tan 8^\circ} \]

\[DK = 35,57684\ldots \text{ km} \]

\[DK = 35,577 \text{ m} \]

\[\checkmark \tan 8^\circ = \frac{5}{DK} \]

\[\checkmark DK = \frac{5}{\tan 8^\circ} \]

\[\checkmark \text{answer} \]

5.2.3

\[DS = 35,58 - 8 = 27,58 \text{ km} \]

\[\checkmark \text{answer} \]

5.2.4

\[\tan D\hat{S}J = \frac{5}{27,58} \]

\[D\hat{S}J = \tan^{-1} \left(\frac{5}{27,58} \right) \]

\[D\hat{S}J = 10,3^\circ \]

\[\checkmark \tan D\hat{S}J = \frac{5}{27,58} \]

\[\checkmark \text{answer} \]

[16]
QUESTION 6

6.1.1

- correct x-intercepts
- correct y-intercept
- asymptotes
- shape (must pass through $(45^\circ; 2)$)

6.1.2

- $y = -2 \tan x$

6.2.1

- $g(x) = a \sin x$
 - $4 = a \sin 90^\circ$
 - $4 = a(1)$
 - $a = 4$

6.2.2

- Range is $-2 \leq y \leq 6$.
 - -2
 - 6
QUESTION 7

| 7.1.1 | \[AH^2 = 0,8^2 + 1,5^2 \] | ✓ \[AH^2 = 0,8^2 + 1,5^2 \]
| | \[AH^2 = 2,89 \] | ✓ \[AH = 1,7 \] (2)
| | \[AH = 1,7 \] |
| 7.1.2 | Surface area of roof \[= 4 \times \frac{1}{2} (3 \times 1,7) \] | ✓ \[4 \times \frac{1}{2} (3 \times 1,7) \]
| | \[= 10,2 \ m^2 \] | ✓ answer (2)
| 7.1.3 | Surface area of walls \[= 4 \times 3 \times 2,1 \] | ✓ \[25,2 \ m^2 \]
| | \[= 25,2 \ m^2 \] | ✓ answer (2)
| | Total surface area \[= 10,2 \ m^2 + 25,2 \ m^2 = 35,4 \ m^2 \] |
| 7.2.1 | Volume \[= \frac{4}{3} \pi (8)^3 \] | ✓ \[\frac{4}{3} \pi (8)^3 \]
| | \[= 2144,66 \ mm^3 \] | ✓ answer (2)
| 7.2.2 | New volume : original volume \[= 2^3 : 1 \] | ✓ \[2^3 \]
| | \[= 8 : 1 \] | ✓ answer (2)
| 7.2.3 | Volume including silver \[= \frac{4}{3} \pi (9)^3 \] \[= 3 \ 053,63 \ mm^3 \] | ✓ \[\frac{4}{3} \pi (9)^3 \]
| | Volume of silver \[= 3 \ 053,63 - 2144,66 \] \[= 908,97 \ mm^3 \] | ✓ answer (2)

QUESTION 8

| 8.1 | \[OQ = 2 \ cm \] | ✓ 2 cm
| | (the long diagonal of a kite bisects the shorter diagonal) | ✓ correct reason (2)
| 8.2 | \[\hat{POQ} = 90^\circ \] | ✓ \[90^\circ \]
| | (the diagonals of a kite intersect at right angles) | ✓ correct reason (2)
| 8.3 | \[\hat{QPO} = 20^\circ \] | ✓ \[\hat{QPO} = 20^\circ \] with correct reason
| | (the longer diagonal bisects the angles of a kite) |
| | \[\therefore \hat{QPS} = 20^\circ + 20^\circ = 40^\circ \] | ✓ \[\hat{QPS} = 40^\circ \] (2)

[6] [12]
QUESTION 9

9.1 O is the midpoint of BD. (Diagonals of parm BCDE bisect each other)
F is the midpoint of OE. (Diagonals of parm AODE bisect each other)
∴ OF || AB (The line joining the midpoints of two sides in a Δ is || to third side)

9.2 AE || OD (Opp sides of parm AODE are parallel)
∴ AE || OB
OF || AB (proven above)
∴ OE || AB
∴ ABOE is a parallelogram (both pairs of opposite sides of quad are parallel)

9.3 In ΔABO and ΔEOD
1. AB = EO ...(Opp sides of parm ABOE are equal)
2. AO = ED ...(Opp sides of parm AODE are equal)
3. BO = DO ...(Diagonals of parm BCDE bisect each other)
∴ ΔABO ≡ ΔEOD (S, S, S)

O is the midpoint of BD
reason –
diagonals of parm
F is the midpoint of OE
reason –
midpoint theorem

AE || OB
reason

OE || AB
reason – opp
sides parallel

AB = EO
AO = ED
reason – opp
sides are equal
BO = DO
reason –
diagonals of parm

TOTAL: 100